A circular loop is kept in that vertical plane which contains the north-south direction. It carries a current that is towards south at the topmost point. Let $A$ be a point on axis of the circle to the east of it and $B$ a point on this axis to the west of it. The magnetic field due to the loop :-
is towards east at $A$ and towards west at $B$
is towards west at $A$ and towards east at $B$
is towards east at both $A$ and $B$
is towards west at both $A$ and $B$
A coil of one turn is made of a wire of certain length and then from the same length a coil of two turns is made. If the same current is passed in both the cases, then the ratio of the magnetic inductions at their centres will be
When the current flowing in a circular coil is doubled and the number of turns of the coil in it is halved, the magnetic field at its centre will become
An element $d l=d x \hat{l}$ (where, $d x=1\, cm$ ) is placed at the origin and carries a large current $i=10 A$. What is the magnetic field on the $Y$ -axis at a distance of $0.5\, m$ ?
Current through $ABC$ and $A'B'C'$ is $I$. What is the magentic field at $P$ ? $BP = PB' = r$ (Here $C'B'PBC$ are collinear)
A circular current carrying coil has a radius $R$. The distance from the centre of the coil on the axis where the magnetic induction will be $\frac{1}{8}^{th}$ to its value at the centre of the coil, is